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Abstract. Wind turbine Supervisory Control and Data Acquisition (SCADA) datasets available for research usually contain a

limited number of failure events. This limitation hinders the successful application of Deep Learning (DL) methods for fault

detection and prognosis, as they require large datasets for robust training and generalisation. This work proposes a method

using Conditional Generative Adversarial Networks (cGANs) to generate synthetic SCADA time series that replicate wind

turbine behaviour under controllable operational, environmental, and degradation conditions. Given a set of SCADA time5

series representing these conditions, the cGAN generates temperature and pressure time series simulating gearbox operation.

Results show that augmenting the training set of an Artificial Neural Network (ANN) fault detection model with synthetic

time series reduces false positives in the detected gearbox faults by 84% on average, enabling the model to blindly detect a

fault in a test wind turbine without prior knowledge of the event. Furthermore, training a Convolutional Autoencoder-based

unsupervised health indicator (HI) model with both real and synthetic SCADA time series leads to an HI that more accurately10

captures the expected degradation trend. Using this HI, the gearbox’s remaining useful life (RUL) can be predicted within the

defined error bounds from around 4.5 months before the detection of the fault, while the HI obtained without the synthetic data

fails to produce reliable RUL estimates.

1 Introduction

State-of-the-art Deep Learning (DL) methods for wind turbine fault detection and prognosis rely on large datasets for robust15

training and generalisation. However, component failures in wind turbines are rare events (Spinato et al. (2009)), and wind

farm operators are often reluctant to disclose detailed information about them due to privacy concerns (Chatterjee and Dethlefs

(2021)). Therefore, Supervisory Control and Data Acquisition (SCADA) datasets available for research usually include very

few failure events, limiting the successful implementation of DL methods. A viable solution to this challenge is to simulate new

failure events within SCADA datasets. This involves generating time series data that mimic sensor signals reflecting turbine20

component behaviour as degradation progresses over a specific time window leading to failure. Rather than merely replicating

existing failure event signals, these synthetically generated run-to-failure time series should instead capture diverse degradation

scenarios under varying operational and environmental conditions. This diversity is crucial for enhancing the training data of

DL fault detection and prognosis models, improving their robustness and practical applicability.
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Existing approaches for generating synthetic signals have mostly used physics-based and hybrid physics-data-driven mod-25

els of wind turbines. They often simulate damage by methods such as inserting additional mass or reducing local structural

stiffness. For example, synthetic vibrational signals generated using the OpenFAST software (Jonkman et al. (2009)) have

been used to validate condition monitoring methods in (Tatsis et al. (2017, 2021); Song et al. (2024)). However, they are un-

suitable for training DL methods to be applied to real wind turbines with different configurations. In (Pujana et al. (2023)), a

hybrid digital twin of a wind turbine drivetrain is developed to generate synthetic stator winding temperature signals, with the30

temperature increase due to a generator failure modelled as a heat exchanger. These synthetic signals are used to train a fault

detection model. While useful, these methods oversimplify the actual component behaviour and cannot model gradual degra-

dation. Therefore, they fail to generate realistic run-to-failure sequences across multiple SCADA signals, which are critical for

prognostic applications.

Data-driven approaches for generating synthetic SCADA time series are rare in the literature. An Artificial Neural Network35

(ANN)-based framework for generating synthetic SCADA signals, given operational, environmental, and degradation condi-

tions, is proposed in (Eftekhari Milani et al. (2024a)). While the generated synthetic signals are in good agreement with the

corresponding field data, this approach assumes that sensor signals at each timestamp are deterministic functions of the cur-

rent conditions. This assumption overlooks the inertia and temporal dependencies present in SCADA signals. These signals,

especially temperature data, often exhibit significant inertia, with measurements strongly dependent on their previous values40

(Mello et al. (2021)). Furthermore, this approach does not address the inherent stochasticity of SCADA signals and does not

demonstrate whether it can simulate new failure events.

Generative Adversarial Networks (GANs) (Goodfellow et al. (2020)) have been proven successful in generating diverse and

realistic synthetic data across many domains, including images (Shorten and Khoshgoftaar (2019)), text (Li et al. (2018)),

audio (Liu et al. (2022)), and video (Chu et al. (2020)). These models consist of two neural networks trained in a competitive45

framework: a Generator generating realistic-looking synthetic samples and a Discriminator evaluating whether the data are

real or synthetic. In the wind turbine SCADA data domain, the application of GANs has been mostly limited to addressing

class imbalances in fault detection tasks by augmenting faulty data instances. For example, faulty data instances are generated

in (Liu et al. (2019)) to enhance fault detection performance. In (Wang et al. (2022)), a variant of GAN called the Least

Squares GAN, is used to generate synthetic data instances and improve the performance of an Autoencoder-based condition50

monitoring framework. Similarly, in (Liu et al. (2023)), a GAN is used to overcome the limitation of scarce faulty data by

generating synthetic faulty instances, which are then used to enhance the performance of an Autoencoder-based anomaly

detection method. These methods outperform more traditional over-sampling approaches (Antoniou et al. (2017)), such as

those based on Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al. (2002)), which have been extensively

used to address the problem of class imbalance in SCADA datasets (Peng et al. (2020); Yang et al. (2021); Li et al. (2023); Tao55

et al. (2024)). However, they are limited to generating individual signal instances rather than run-to-failure time series. Another

limitation of these methods is that they cannot simulate entirely new failure events and are limited to oversampling faulty data

instances corresponding to existing failure events in SCADA datasets (Chesterman et al. (2023)). Extending these approaches

to generate entire time series is challenging, as a generative model must learn not only the feature distributions but also their
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temporal dynamics. Furthermore, it must generate a diverse set of time series under predefined operational, environmental, and60

degradation conditions to be useful for wind turbine fault detection and prognosis.

This work addresses these limitations by developing a method based on a conditional GAN (cGAN) (Mirza and Osindero

(2014)). Unlike the standard vanilla GAN, the proposed model allows conditioning each generated signal instance to a vector

of predefined conditions, including component degradation levels and SCADA measurements related to environmental con-

ditions and the operational states of the wind turbine. To capture temporal dynamics of the signal instances, Gated Recurrent65

Unit (GRU)-based recurrent neural networks (Cho et al. (2014)) are used for both the Generator and Discriminator networks,

enabling the model to retain a memory of condition vectors from previous timestamps. Furthermore, as suggested by (Yoon

et al. (2019)), a supervised loss term is added to the Generator’s training loss function to enhance the cGAN’s ability to generate

realistic SCADA time series. The effectiveness of this approach for fault detection and remaining useful life (RUL) prediction

is demonstrated using field SCADA data. The results show that augmenting field data with synthetic time series generated70

by the cGAN significantly reduces false positives caused by the scarcity of failure events in training data. This enables the

model to blindly detect a fault in one of the test wind turbines without prior knowledge of the event. Furthermore, including

synthetic time series enhances the performance of a health indicator (HI) construction model. The resulting HIs better capture

the degradation trend than those generated without the synthetic data, leading to more accurate RUL predictions. The rest of

this paper is organised as follows: Section 2 describes the method developed for synthetic SCADA time series generation.75

Section 3 introduces the SCADA dataset used, data preprocessing, selected signals, and the healthy and faulty wind turbines.

Sections 4 and 5 present the application of the proposed method in fault detection and RUL prediction, respectively. Finally,

conclusions are drawn, and future work is discussed in Section 6.

2 Generation of synthetic SCADA signals

A set of SCADA signals representing the operation of a wind turbine component, such as gearbox temperature and pressure80

signals, is a discrete multivariate time series S = {si,t}with distribution ps where t = 1, . . . ,T , i = 1, . . . ,Ns, Ns is the number

of component signals, t is the time instance, and T is the length of the dataset. Similarly, O = {oi,t}, where i = 1, . . . ,No, and

E = {ei,t} where i = 1, . . . ,Ne, are sets of SCADA signals representing operational and environmental conditions over the

same time interval t = 1, . . . ,T , such as rotor speed and ambient temperature, with No and Ne being the number of signals

representing these condition respectively. D is an HI representing the degradation of the component at each point in time,85

which can be extracted from the SCADA signals. The set of {O,E,D} is called the condition time series C = {ci,t} where

i = 1, . . . ,Nc, and Nc = No + Ne + 1 is the number of condition signals.

It is assumed that S is a function of C (Eftekhari Milani et al. (2024a)) with some stochasticity inherent in the SCADA

signals. At each instance t, st is a function of not only ct but also all the previous instances due to the inertia inherent in the

SCADA signals. However, in practice, this dependence becomes negligible beyond a certain time window. This relationship90

can be expressed through a stochastic generative function F :

st = F(c1:t,zt) (1)
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where zt is a vector of random noise with distribution pz . The objective of this work is to model F through a GAN-based

framework and use it to generate a set of synthetic SCADA signals Ss given any C.

2.1 HI construction95

As mentioned in the previous section, D is an HI extracted from the SCADA dataset and, together with O and E, forms

the condition time series C. In this work, D is obtained using the unsupervised method developed in (Eftekhari Milani et al.

(2024b)), where it is demonstrated that it can construct HIs that track the true component degradation trend more accurately

than other methods proposed in the literature. This approach adopts a Convolutional Autoencoder (CAE), which is trained

using a hybrid of Particle Swarm Optimisation (PSO) and backpropagation to simultaneously maximise the HI monotonicity100

built in the middle layer and minimise the reconstruction error. The training fitness function to be maximised is:

f = fM− fR− f0− f1 (2)

where fM is the monotonicity of the HI built in the middle layer of the CAE, measured using the Mann-Kendall (MK) metric

(Pohlert (2015)), fR is the CAE reconstruction loss, i.e., the Mean Squared Error (MSE) of the difference between the CAE

input and output, f0 = |HI(0)| is the absolute HI value at its initial timestamp, and f1 = |1−HI(end)|, where HI(end) is105

the HI value at its final timestamp. Maximising f corresponds to minimising both f0 and f1 and training the CAE to associate

the healthy state at the initial timestamp with an HI value of 0, and the failed state at the final timestamp with an HI value of

1. In this work, f0 is removed from f because the component is not necessarily in a pristine state at the initial timestamp of a

run-to-failure SCADA time series.

SCADA measurements are characterised by high noise levels and varying operational and environmental conditions. These110

factors make it more challenging for the CAE to effectively reconstruct and denoise the signals compared to more controlled

vibration signals obtained from bearing test beds used in Eftekhari Milani et al. (2024b). Therefore, in this work, an additional

term fstd is considered, which measures the average weekly rolling standard deviation of the HI and minimising this term leads

to a less noisy HI. Furthermore, the weights of the fR and fstd terms are experimentally set to 3 to balance the four terms. The

CAE training fitness function thus used in this work is:115

f = fM− 3fR− f1− 3fstd (3)

The CAE architecture and the training algorithm hyperparameters are set according to those proposed in (Eftekhari Milani

et al. (2024b)).

Since wind turbines operate under highly variable operational and environmental conditions, the constructed HIs usually ex-

hibit local variations, which can reduce the RUL prediction accuracy. To mitigate these variations, a post-processing algorithm120

is developed, leveraging the usual irreversible nature of component degradation. As shown in Algorithm 1, a curve is fitted

to the HI using the non-parametric Locally Weighted Scatterplot Smoothing (LOWESS) regression approach (Cleveland and

Devlin (1988)). This curve is then subtracted from the HI, and subsequently, the cumulative maximum of the curve is re-added

to the HI.
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Algorithm 1 HI post-processing algorithm

1. Fit a curve to the HI using LOESS;

2. Compute residue: residue = HI − curve;

3. Compute curvecm: curvecm(t) = max[curve(1 : t)];

4. Compute the post-processed HI: HIpp = residue + curvecm.

Figure 1. Example of HI post-processing on a hypothetical HI: (a–c) raw HI, its first 200s, and its first 300s; (d–f) post-processed HI, its first

200s, and its first 300s

Figure 1 provides a visual explanation of this algorithm and its impact on RUL prediction. Figure 1(a) shows a hypothetical125

HI and a curve fitted using LOWESS. In Figures 1(b) and (c), which show the HI at t = 200s and t = 300s, respectively, it

is evident that the slope of the regression line oscillates between negative and positive values. This undesirable behaviour is

resolved after post-processing the HI with Algorithm 1, as shown in Figures 1(d–f).

2.2 Vanilla GAN

GANs consist of two neural networks: A Generator (G), which takes an input vector of unit Gaussian random noise and gen-130

erates a synthetic sample, and a Discriminator (D), which, given any sample, outputs the probability of it being real (not

synthesised). These neural networks are trained in an adversarial framework where the Generator is trained to generate increas-

ingly realistic-looking synthetic samples to deceive the Discriminator and the Discriminator is trained to detect these synthetic

samples with higher accuracy (Goodfellow et al. (2020)). In the context of SCADA signals, the Generator receives a noise

vector zt as input and is trained to generate synthetic signals ss
t that match the distribution of the real signals st used to train135
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the GAN. The Discriminator is trained to output a probability of 1 when the data is real and 0 when it is synthetic, minimising

the loss function:

Lv
D =−Est∼ps

[logD(st)]−Ezt∼pz
[log(1−D(G(zt)))] (4)

where E denotes the expected value. The Generator is trained to deceive the Discriminator by generating synthetic samples

that it classifies as real, assigning a label of 1. It minimises the loss function:140

Lv
G =−Ezt∼pz

[logD(G(zt))] (5)

The overall objective is a minimax game between the Generator and the Discriminator:

min
G

max
D

V (D,G) = Est∼ps [logD(st)] + Ezt∼pz [log(1−D(G(zt)))] (6)

where the Discriminator tries to maximise the value function V , and the Generator tries to minimise it.

2.3 Proposed method for generating synthetic SCADA signals145

A vanilla GAN treats S as a group of independent samples st and models only the signal distribution p(st), neglecting the

temporal dependencies (Yoon et al. (2019)). Furthermore, signals are generated based only on a random noise vector. Therefore,

the objective of this work is to develop a GAN-based framework that effectively models F in Equation 1 by:

1. Conditioning the signal generation on both the condition vector C and a random noise vector;

2. Modelling the temporal dynamics of SCADA signals by conditioning the signal generation at each timestamp on infor-150

mation from previous timestamps, in addition to the current one.

In other words, rather than modelling the marginal distribution of the signals p(st), the framework should model the conditional

distribution p(st|c1:t).

The first task above is achieved by adopting a cGAN framework (Mirza and Osindero (2014)), which allows the input of a

condition vector at each timestamp t to the Generator and the Discriminator, based on which the samples are generated. The155

loss functions of the Discriminator and Generator then become:

LD =−Est∼ps [logD(st|ct)]−Ezt∼pz [log(1−D(G(zt|ct)))] (7)

LG =−Ezt∼pz [logD(G(zt|ct))] (8)

The second task is achieved by using a Recurrent Neural Network (RNN) for both the Generator and the Discriminator,

allowing them to retain information from previous timestamps at each t. Additionally, as suggested in (Yoon et al. (2019)), a160

supervised loss term LS is incorporated into the GAN Generator loss function to further enhance temporal consistency.

LS = Est∼ps
zt∼pz

[||st−G(zt|ct)||22] (9)
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Figure 2. Flowchart of the cGAN-based synthetic SCADA signal generation framework

Figure 3. Flowchart of the cGAN model

This loss term minimises the Euclidean distance between the true and generated signals during the training phase. The modified

Generator loss function then becomes:

L′
G = LG +LS (10)165

The flowchart of the cGAN-based synthetic SCADA signal generation framework is shown in Figure 2. In this work, Gated

Recurrent Unit (GRU)–based RNNs have been used, as GRU cells achieve performance comparable to LSTM cells while

having fewer parameters. This makes them more efficient, faster to train, and less prone to overfitting (Chung et al. (2014)).

The flowchart of the cGAN model is shown in Figure 3 where y = p(x = st|ct), with x being the input to the Discriminator.

The architectures of the Generator and the Discriminator are shown in Figure 4, where:170

1. w is the length of a rolling time window applied to C before being fed into the GRU layer in both networks. This

transforms the shape of C from (T,Nc) to (T −w+1,w,Nc) and is shown in Figure 5. In this study, the window length

w is experimentally set to 10;
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Figure 4. Architecture of the Generator (left) and the Discriminator (right)

Figure 5. Applying a rolling time window of length w to the condition time series

2. Λ denotes the Leaky ReLU activation function defined below with α = 0.2.

Λ(x) =





x if x≥ 0

αx if x < 0
(11)175

This architecture ensures a balanced training process between the Generator and the Discriminator while providing a good

trade-off between training efficiency and performance.
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Table 1. Selected SCADA signals

Gearbox-related signals (S) Environmental condition signals (E) Operational condition signals (O)

Gearbox bearing A temperature Ambient wind speed Rotor speed

Gearbox bearing B temperature Ambient temperature

Gearbox bearing C temperature

Gearbox oil temperature

Gearbox oil temperature at the inlet

Gearbox oil pressure before filter

Gearbox oil pressure after filter

3 Dataset

The field dataset used in this work consists of 10-minute SCADA signals collected from 2017-01-01 to 2022-08-01 from nine

2 MW wind turbines (WT1–9) in a wind farm operated by Lucky Wind S.p.a. company1. Each turbine has a diameter of 100m,180

a hub height of 80 m, and a three-stage gearbox with one planetary and two parallel stages. Maintenance logs report that one

of the wind turbines, WT8, experienced a gearbox failure on 2022-02-23. A total of ten signals are selected for analysis: seven

related to gearbox operation, two to environmental conditions, and one to operational conditions. These signals are reported

in Table 1. The SCADA signals from WT8 during the year leading to the gearbox failure are used for training purposes. In

addition, WT9 data is used as the validation set, and the remaining seven wind turbines are used as the test set.185

3.1 Data preprocessing

Data preprocessing in this study is limited to omitting non-physical signal values and those corresponding to non-operational

turbine conditions. Non-physical signal values refer to instances where gearbox-related temperatures are lower than the am-

bient temperature, gearbox oil pressure is equal to zero, and rotor speed is negative. These outliers, likely caused by sensor

malfunctions, constitute around 5% of the total data. Non-operational values occur when the turbine is idling and the produced190

power is negative. They constitute around 20% of the total data. As a result, around 25% of the original data points are excluded

from the analysis during the data preprocessing step.

After eliminating these outliers, the signals are resampled into six-hour time intervals. Increasing the sampling period reduces

the number of data points, leading to a lower computational burden. It also contributes to a higher signal continuity by reducing

the percentage of missing data. However, this comes at the cost of decreased fault detection and RUL prediction accuracy. A195

six-hour resampling period has been identified as a good trade-off between these factors. As a result, the number of data points

in a year drops from around 52000 to around 1400, and the percentage of missing data decreases from around 25% to around

3%.
1https://www.luckywind.it/
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Figure 6. Flowchart of the fault detection experiment. Th and Tf refer to WT8 time frames labelled as healthy and faulty. They span 11

months and one month, respectively.

4 Fault detection case study

In this section, an experiment is performed to assess the effectiveness of the developed method in fault detection. A classifier is200

trained with the training (WT8) signals spanning from 2021-02-23 to 2022-02-23 (the gearbox failure time), to identify faulty

gearbox operation. The timestamps during the last month before failure are labelled as faulty (1), while the remaining 11 months

are labelled as healthy (0). The classifier used is an Artificial Neural Network (ANN) with three hidden layers consisting of

16, 8, and 4 neurons, respectively, each with a ReLU activation function. The output layer uses a Sigmoid activation function.

This architecture provides a good trade-off between performance and computational burden. Because of the highly imbalanced205

nature of the number of healthy and faulty data points, the minority (faulty) class is oversampled using the SMOTEN method

(Chawla et al. (2002)). The flowchart of the fault detection method is shown in Figure 6.

Once trained, the ANN is used to predict fault state labels (0 or 1) for each timestamp in the SCADA signals of WT1–7 and

WT9. State change from healthy to faulty is generally gradual rather than an instantaneous process. Therefore, an individual

time stamp predicted as faulty might be due to noise rather than an actual fault (Zhao et al. (2017)). For this reason, in (Zhao210

et al. (2017) and Peter et al. (2022)), the ratio of the detected anomalous data points to the total number of data points within a

fixed time window is used as a fault index. In this work, a similar approach is adopted. A fault index is defined as the weekly

moving average (MA) of the predicted labels to improve detection robustness. The results for the training wind turbine and

three test wind turbines are shown in Figure 7(a–d). Numerous misclassified labels, i.e., a predicted label of 1 when the gearbox

is healthy, are observed mainly for WT2 in Figure 7(b) and WT7 in Figure 7(d), particularly clustered around February each215

year, which coincides with the failure month of WT8, used to train the ANN. This suggests that, due to the availability of

only one failure event for training, the ANN has learnt the seasonal features in the signals around the failure time of WT8,

associating these features with class 1 (faulty).

To address this problem, the developed cGAN-based framework is used to generate synthetic signals that simulate the

degradation and failure of the WT8 gearbox across various time frames. To create the condition time series C, an HI is built220

using the proposed HI construction method, representing the degradation of the WT8 gearbox during the year leading to its

failure. The obtained HI is shown in Figure 8. This HI and the three environmental and operational condition signals of WT8

form the condition time series (Nc = 4). These, along with the seven gearbox-related signals of WT8 (Ns = 7), are used to
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Figure 7. Predicted raw labels and their weekly moving average (fault index): (a–d) obtained with the original signals and (e–h) with both

original and synthetic signals. (a) and (e) refer to the training wind turbine (WT8), (b) and (f) to WT2 (healthy), (c) and (g) to WT6 (faulty),

and (d) and (h) to WT7 (healthy).
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Figure 8. HI of WT8 during the year leading to the gearbox failure.

train the cGAN. The Adam optimiser is used (Kingma and Ba (2014)) with a learning rate of 0.0005 to train both the Generator

and the Discriminator. This setting provides a balance between training stability and speed.225

Once the cGAN is trained, the environmental (E) and operational (O) condition signals are shifted from the Feb 2021—Feb

2022 time frame to new time frames, Apr 2020—Apr 2021, Jul 2019—Jul 2020, Sep 2018—Sep 2019, and Dec 2017—Dec

2018, while keeping the degradation signal (D) unchanged. These time frames are selected to simulate the gearbox failure in

a variety of seasonal conditions. This results in four new condition time series Ci = {Oi,Ei,D} where i = 1, . . . ,4. These

condition time series are then input to the trained Generator which generates the corresponding synthetic signal time series Ss
i230

where i = 1, . . . ,4. Together with their corresponding environmental and operational signals (E and O), these synthetic signal

time series form four synthetic SCADA datasets. The test set predictions using the ANN trained with both the original and

synthetic datasets are shown in Figure 7(e–h) for the training wind turbine and three test wind turbines. A noticeable decrease

in the number of misclassified labels can be observed when compared to the predictions made using only the original dataset.

Across the wind turbines in the healthy test and validation sets, the number of misclassified labels, reported in Table 2, have235

decreased significantly, by around 84% on average. A detection threshold of 0.107 is selected for the fault index based on the

maximum fault index value observed in the validation wind turbine, the crossing of which indicates a fault. False positives,

i.e., the time stamps when the fault index is above the detection threshold while the gearbox is healthy, are reported in Table

3 and have been almost completely resolved. This results in a clear detection of a potential anomaly and fault in WT6. The

fault index increases sharply around the end of October 2018 and remains at a lower level until around the end of May 2019.240

Further investigation into the farm maintenance logs and monthly reports revealed that a moderate gearbox-related fault was

discovered and addressed during a 12-hour maintenance intervention on 2019-05-30. Coincidentally, this anomaly occurred

during the seasonal period where false positives were previously observed in Figure 7(a–d). Therefore, without the synthetic

data, detecting this fault with high certainty would have been challenging.

Considering the detection threshold of 0.107, the fault in WT6 is detected on 2018/10/19 at 06:00:00, more than seven245

months before the maintenance. Furthermore, the fault in WT8 is detected on 2021/08/28 at 06:00:00, as shown in Figure 7(e),

while the actual failure occurred on 2022/02/23.
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Table 2. Number of misclassified labels in the healthy test and validation set wind turbines.

WT1 WT2 WT3 WT4 WT5 WT7 WT9

Without synthetic datasets 21 193 319 125 14 281 356

With synthetic datasets 4 33 80 13 2 33 44

Table 3. Number of false positives in the healthy test and validation set wind turbines.

WT1 WT2 WT3 WT4 WT5 WT7 WT9

Without synthetic datasets 24 508 928 298 22 802 1045

With synthetic datasets 0 0 0 0 0 18 0

5 RUL prediction case study

This section assesses the effectiveness of the developed method in fault prognosis. WT8, used for training, experienced a

gearbox failure, while WT6’s gearbox underwent maintenance while the fault was at a moderate level, and failure did not250

occur. As a result, a ground truth failure time is not available for the gearbox of WT6. For this reason, the fault prognosis in

this section aims to predict the time when the degradation reaches a level that can be detected by the fault detection method

discussed in the previous section.

The CAE used for HI construction is trained with WT8 signals spanning the year leading to the gearbox failure. A threshold

of 1 is assigned for gearbox failure, as indicated by the f1 term in the CAE training fitness function in Equation 3. Additionally,255

the mean value of the HI during the week leading to the detection in WT8, which is 0.84, is set as the HI threshold corresponding

to the degradation level associated with the fault detection. Figure 9 shows WT8 HI along with these thresholds. Using the

trained CAE, the WT6 HI is then constructed and is shown in Figure 10(a).

To properly train the CAE to extract the true degradation trend, a training set comprising multiple run-to-failure datasets with

diverse degradation trajectories is needed. To achieve this, synthetic signals are generated by modifying the degradation trend260

D in the condition time series C and shifting the environmental E and operational O signals. The resulting four new condition

time series, then, become C ′
i = {Oi,Ei,Di} where i = 1, . . . ,4, with D1, . . . ,D4 representing four different degradation tra-

jectories. To derive D1, . . . ,D4, the Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

algorithm (Colominas et al. (2014)) is applied to decompose the training HI in Figure 8 into its trend component Dtrend and

several other intrinsic mode functions (IMFs), DIMF,i which collectively make up the HI noise.265

D = Dtrend + Dnoise (12)

Dnoise =
NIMF∑

i=1

DIMF,i (13)
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Figure 9. HI of WT8 and the selected thresholds for detection and failure.

Figure 10. WT6 HI: (a) with the original signals and (b) with both original and synthetic signals (b).

where NIMF is the number of IMFs other than the trend. The decomposed trend and noise components of the training HI are

shown in Figure 11. Then, four synthetic trends are created using the equation below:

Dtrend,i(t) = min(Dtrend) + [max(Dtrend)−min(Dtrend)](
t

T
)pi , i = 1, . . . ,4 (14)270

with p1−4 equal to 1, 3, 10, and 50, respectively, and are plotted in Figure 12. This equation models an HI trend starting at

the minimum value of the WT8 HI trend and ending at its maximum value. It is important to note that assigning a fixed HI

value at failure time for all synthetic HIs is valid in the proposed framework, as the model used for HI construction is explicitly

trained to associate failure with an HI value of 1. This enforces consistency by design and minimises variability in the HI at

failure across different realisations. The exponent pi determines the trend regime. A value of 1 produces a linear trend, while275
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Figure 11. Decomposition of the WT8 HI into the (a) trend and (b) noise component

Figure 12. Four degradation trends used to obtain the synthetic HIs.

higher values indicate more pronounced non-linearity, representing increasingly abrupt degradation patterns. The p1−4 values

are chosen to represent meaningfully distinct degradation behaviours.

Next, the corresponding synthetic HIs are obtained by adding the WT8 HI noise to the synthetic trends and are shown in

Figure 13. These, combined with the shifted operational and environmental signals, form the four new condition time series

C ′
1, . . . ,C

′
4, which are fed into the trained Generator to obtain their respective synthetic signal time series Ss′

1 , . . . ,Ss′
4 . These280

synthetic signals, along with the corresponding E and O signals, create four additional synthetic datasets that are added to the

CAE’s training set. Subsequently, an HI is constructed for WT6, which is shown in Figure 10(b).

Regardless of the inclusion of synthetic datasets, the HI built for WT6 crosses the detection threshold around the time the

gearbox fault is detected and briefly overshoots the failure threshold. However, this exceedance is not sustained, and the HI

stabilises between the detection and failure thresholds until the fault is identified and addressed through maintenance, prevent-285

15

https://doi.org/10.5194/wes-2025-62
Preprint. Discussion started: 13 June 2025
c© Author(s) 2025. CC BY 4.0 License.



Figure 13. Synthetic HIs used to generate the synthetic signals: (a–d) refer to HI1–4 built with trends 1–4.

ing complete failure. These results align well with the behaviour of the fault index in Figure 7(g) and the WT6 maintenance

report, which confirms a moderate gearbox-related fault. Notably, the HI built using synthetic datasets exhibits a clearer degra-

dation trend, achieving a monotonicity of 0.61 (measured by the MK metric) up to the detection point, compared to 0.53 when

synthetic datasets are not used.

To assess the performance of the two HIs in Figure 10(a) and (b) in predicting the RUL up to the detection point, a second-290

order polynomial function at2 + bt+ c is fitted to the HI up to timestamp t with t = 700, . . . ,1470 (detection time) in six–hour

units. The projected crossing point of the fitted function with the detection threshold of 0.84 is then used to calculate the

predicted RUL at each t. To ensure convexity and guarantee that the projected trend crosses the threshold, the constraint a≥ 0

is enforced during curve fitting. The true and predicted RULs are shown in Figure 14. At each timestamp, the true RUL

corresponds to the number of six–hour timestamps remaining until the detection time. It can be seen that the HI built with the295

synthetic datasets considerably outperforms the one built without them in correctly predicting the RUL. Considering an error

bound of one month, this HI achieves a prognosis horizon of around 4.5 months. This implies that using this HI, along with

the adopted RUL prediction approach, enables consistent fault-time prediction with the assigned accuracy up to 4.5 months in

advance. It is worth noting that a simple RUL prediction approach is used in this work, as developing more complex forecasting

approaches is beyond the scope of this work. Adopting more sophisticated approaches could lead to even better RUL prediction300

performance.
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Figure 14. Comparison between the WT6 true and predicted RULs during the year leading to the fault detection

6 Conclusions

In this work, a method based on cGANs is developed to generate synthetic SCADA signals. This approach enables the gen-

eration of sensor time series with controllable degradation trends, as well as operational and environmental conditions. As a

result, it can simulate new failure events or recreate a given failure under different conditions. A fault detection case study305

demonstrates that this method almost completely resolves false positives. This allows for the blind detection of a fault in one of

the test wind turbines more than seven months before it was discovered and maintained by the wind farm operators. The false

positives are due to the availability of only one failure event in the training data, leading the model to associate the seasonal

characteristics of signals at the time of failure with fault features. By augmenting the training data with synthetic signals that

simulate the same failure under different seasonal conditions, this problem is mitigated.310

Furthermore, the study shows that training an HI construction method with synthetic signals simulating diverse degradation

scenarios leads to a considerably more accurate RUL prediction. This approach enables the prediction of the RUL up to 4.5

months before fault detection in a test wind turbine. In contrast, the HI built without synthetic signals fails to provide accurate

RUL estimates.
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Accurately forecasting the future trajectory of an HI for RUL prediction remains an important topic that is out of the scope315

of this paper. Therefore, a simple prediction approach is employed. Future research will focus on developing probabilistic

approaches for more precise RUL prediction using component HIs.
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